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ABSTRACT 

This repor t  covers  the prediction of the S-IB-7 propulsion system flight per-  
formance and supersedes CCSD Technical Report TR-P&VE-67-46, due to changes 
in propulsion cr i ter ia  and launch schedule. 

Analyses of the prediction data indicate that inboard and outboard engine cutoffs 
wi l l  occur approximately 136.94 seconds and 139.94 seconds after first motion, 
respectively. These t imes  a r e  based on defined LOX and fuel load specific weights 
and stage propellant fill weights for the revised launch schedule for AS-207 (fourth 
quarter  of 1968). 
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FOREWORD 

i 

1 .  

This  repor t  presents  the flight performance prediction data for the Saturn AS-207 
(Mission 276) Propulsion System, S-IB-7 stage, and is authorized by Contract NAS8- 
4016, DRL 039, Revision C ,  Item 35. 

The prediction data were determined by simulating the first stage powered flight 
of the Saturn AS-207 with the Mark IV computation procedure. The data presented 
in this  repor t  supersedes those presented in CCSD Technical Report TR-P&VE-67-46. 
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Section 1 

SUMMA TION 

1.1 INTRODUCTION 

This  repor t  presents  the flight performance prediction of the S-IB-7 pro- 
pulsion system and a discussion of the data and methods used in making the 
prediction. 

The AS-207 configuration used in this  prediction is to be par t  of the Mission 
276 dual launch. AS-206 will c a r r y  a Lunar Module as  a payload, while 
AS-207 will place an Apollo Command Service Module into orbit  to  be mated 
with the Lunar Module. 

1.2 OBJECT 

The object of this  report  is to present the predicted performance parameters  
of the S-IB-7 propulsion system. 

1. :I CONCLUSIONS 

Analyses of the available data indicate that nominal inboard and outboard 
engine cutoff (IECO and OECO) will occur approximately 136.94 seconds 
and 139.94 seconds after f i r s t  motion, respectively. 
based on the following assumptions: 

These t imes are 

a.  

h. 

c .  

A nominal fuel load specific weight of 50.25 lbm/ft3. 

A nominal LOX load specific weight of 70.574 lbm/ft3. 

A liquid level difference of 3 inches between the center  LOX tank and 
the outboard LOX tanks at the t ime of inboard engine cutoff signal. 

S a g e  nominal fill weights of 631,932 pounds of LOX and 279,177 
pounds of fuel. 

t i .  

1 
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Section 2 

DISCUSSION 

2 . 1  VEHICLE DESC RIPTIOE 

I i  
The AS-207 vehicle will consist of the S-IB-7 f i r s t  stage, S-IVB second 
stage, the S-IU-207 instrument unit, and an Apollo com mand/service 
module payload. The vehicle is scheduled for launch during the fourth 
quarter  of 1968 a s  part  of a dual launch Apollo support mission. 

2 . 2  PREDICTED PERFORMANCE 

The predicted performance includes all  the latest  changes in propulsion and 
stage c r i te r ia  that have occurred since the last  prediction reported in 
reference 1. 

Changes in cr i ter ia  from those used in reference 1 a r e  revisions to the H-1 
engine table of influence coefficients, Rocketdyne single engine acceptance 
tes t  data, launch date, axial force coefficients, stage trajectory,  and engine 
performance biasing factors.  

Six sets 01 predictions were made: the nominai case was based on the ex- 
pected propellant density conditions for the launch month; four cases  were 
based on the 3-sigma propellant density dispersions for  that month; and one 
case represents  a minimum residual dispersion. 

2 . 2 . 1  Nominal Prediction 

Specit'ic performance data were recorded on magnetic tapes B5 and B6, 
ree ls  3775 and 6140, respectively. These tapes were delivered to CCSD 
Aerospace Physics Branch (Department 2780). A duplicate copy of the 
€36 tape (reel  6291), required by the Aero-Astrodynamics Laboratory 
(R-P&VE-FMT), MSFC, was submitted to the Performance Analysis Section 
(R-PkVE-PPE),  MSFC. The weights ca rds  have been given to the CCSD 
Weight Control Group (Section 2733) fo r  evaluation. 

3 



Weight data a re  prdsented in tabl t  1. Stage parameters ,  including predicted 
fill weights, ullage volumes, and engiue cutoff t imes ,  are shown in table 2. 
Vehicle thrust ,  specific impulse,  fuel f lowrate,  LOX flowrate, and mixture 
ratio as  functions of flight t ime,  referenced from first motion, are shown in 
f igures  1 through 5, respectively. 

LOX and fuel tank ullage p res su res ,  ambient pressure ,  and LOX pump 
inlet specific weight as  functions of flight t ime  are  shown in f igures  6 through 
8. Representative engine performance curves  a s  a function of flight t ime are 
shown in figures 9 through 13. Average values for many of the pa rame te r s  
appear on these curves.  The averages were calculated from f i r s t  motion to 
IECO. 

2.2.2 DisDersion Cases  

In addition to the nominal prediction, five flights were simulated to show the 
effects of various propulsion performance dispersions.  These flights con- 
s is ted of fuel density dispersions due to 3-sigma prelaunch ambient a i r  
temperature  and LOX-proximity chilldown r a t e  deviations, LOX density 
variations caused by 3-sigma prelaunch wind speed deviations, and the effect 
of a lower than expected consumption rat io  on stage performance. Data 
obtained from the additional flight simulations are shown in table 2. 

The minimum residual dispersion is commonly r e fe r r ed  to  a s  the -3-sigma 
engine mixture ra t io  (EMR) residual propellant dispersion. The data for 
this dispersion reflects an approximate shift of -0.67 percent in propellant 
mixture ratio while holding the thrust  and specific impulse values  the same  
a s  f o r  the nominal case.  The effective mixture ra t io  shift accounts for  
consumption of the 1000-pound fuel bias pr ior  to  IECO, and an  additional 
800 pounds of f u e l  available pr ior  to OECO; as a resu l t ,  1800 pounds of 
additional f u e l  will be consumed with the nominal LOX consumption. This  
case simulates a simultaneous OECO signal f rom the thrust  OK pressure  
switches and the fuel depletion probes. 

* 

Data from the propulsion performance dispersion cases a r e  recorded on 
tapes  B5, B6, and B7, which a re  s tored a t  the Computer Operations Office. 
The r ee l  numbers of the tapes are a s  follows: 

Condition 

3-Sigma Low Fuel Density 

3-Sigma High Fuel Density 

3-Sigma Low LOX Density 

3-Sigma High LOX Density 

-3-Sigma Mixture Ratio 

Tape B5 Tape B6 
Reel No. Reel No. - 

2539 1613 

888 9 9137 

326 9 6101 

3783 7082 

1880 1911 

4 

Tape B7 
Reel No. 

1413 

6871 

6952 

2243 

1895 

Duplicate 
Tape B6 
Reel No. 

7680 

3156 

496 9 

3464 

6751 



2.2.3 

The weights c a r d s  bere given to the CCSD Weight Control Group (Depart- 
ment 2733), and tapes B5 and B6 are for use by the CCSD Aerospace Physics 
Branch (Department 2780). Duplicate copies of tape B6 (previously listed) were 
submitted to the Performance Analysis Section (R-P&VE-PPE) MSFC. 

Propellant Usage 

The nominal stage fi l l  weights shown in table 3 were determined for  a LOX 
volume of approximately 66,990 gallons, having a specific weight of 70.574 
lbm/cu ft, and a corresponding amount of fuel (required for simultaneous de- 
pletion of consumable propellants) at a specific weight of 50.25 lbm/cu f t  
(reference 2). The fill weights shown in the table \vi11 be required for  the de- 
pletion of nominally defined consumable propellants. 

Variations from the predicted fuel density will require  adjustments to the 
predicted propellant loads to ensure defined simultaneous depletion of pro- 
pellants. The required propellant loads for any fuel density are presented 
in figure 14. 

A fuel bias  of 1000 pounds i s  included in the fuel load to minimize propellant 
res iduals  if there  are  deviations from the predicted propellant mixture ratio. 
The fue l  bias for this  flight is the same a s  that used for all previous S-IB 
flights. 

The LOX specific weight i s  based on a predicted wind velocity of 9.8 knots 
a t  launch time. 
ambient a i r  temperature  fo r  the month of launch during the fourth quarter  of 
the year ,  and an approximate lo-degree chilldown due to  LOX exposure. 
Included in the total exposure time is an estimated 30 minutes of unscheduled 
holds. The same fuel density vs .  temperature information was used as that 
for AS-206. 
evaluated and this repor t  will be updated if necessary.  

The fuel specific weight w a s  determined by using an estimated 

When a fuel sample i s  available for  AS-207 the data will be 

All LOX in t h e  tanks,  sumps,  and interchange l ines (except approximately 
3 gallons trapped in the center tank sump) can be consumed. Approximately 
75 gallons of the outboard engine suction line LOX volume will a l so  be con- 
sumed if the predicted LOX starvation mode of OECO occurs .  The remaining 
LOX in the  suction lines i s  considered as  unusable propellant and i s  shown 
a s  LOX residual in table 1. 

It  is predicted that the fuel level (for the nominal case)  a t  the end of out- 
beard engine t h r ~ s t  decay .vi!! hr a!~!ir=nxirriaiely a i  t h e  bottom of the containers. 
The fuel in the sump, interchange l ines,  and suction l ines i s  shown as  fuel 
residual in table 1. 

A portion of the predicted fue l  residual i s  the 1000-pound fuel bias  available 
for consumption prior t o  IECO. Approximately 800 pounds more  of the 
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residual can be consumed prior to OECO if a significantly lower than pre-  
dicted consumption ratio is experienced. If nominal performance occurs ,  
th i s  1800 pounds of fuel will not be consumed. 

J 

2.2.4 Engine Performance 

S-IB-7 is t h e  second S-IB stage that has the 205K thrust  H-1 engines. Engine 
data from Rocketdyne individual engine acceptance tes t s ,  the short  and long 
duration stage static tes t s ,  and comparison of these data with other H-1 
engine data were analyzed to predict stage flight propulsion performance. 
The various data for S-IB-7 a r e  shown in table 3 .  A summary of the 
individual engine data has been made in table 4 by averaging the data f rom 
table 3. 

Rocketdyne has revised the H-1 engine power balance computer program 
(engine mathematical model) and table of influence coefficients (gain table) 
since the las t  S-IB-7 Propulsion System Prediction was published (reference 
1). The revisions a r e  a result  of Rocketdyne’s latest  gain study (reference 
3 ) .  The mathematical model is used to reduce Rocketdyne single engine 
acceptance test data to rated pump inlet conditions (sea level data). The gain 
table is used in propulsion performance predictions and also in the s i te  r e -  
duction of MSFC stage static tes t  firings. 
a summation of all S-IB-7 engine s i te  data reduced to standard sea level 
conditions with the latest  mathematical models. 

The data presented in table 3 is 

When the stage static tes t  data were reduced with the latest  205K thrust  gain 
table, no attempt was made to adjust engine propellant flowrates according 
to tank discrete probe data. The flowrates quoted for the stage static tes t s  
a r e  calculated values that were obtained by the “rpm-match” method of re- 
constructing stage static test  data. This method determines individual 
engine flowrates by adjusting the Rocketdyne flowrates to be consistent with 
the power level of the engines during stage static tes t ,  using measured 
turbopump speed. Therefore,  the flowrate data shown in table 3 for the 
stage tests a r e  not necessarily exact. 

The engine histories for the majority of 200K and 205K H - 1  engines have 
indicated an upward shift in performance from Rocketdyne acceptance tes t s  
to stage static tes ts .  A further increase from stage static test  to flight 
has occurred for the 200K engine powered stage flights. However, during 
the stage static test of S-IB-7, three engines (positions 1, 6 ,  and 8) exhibited 
l o w r  performance levels than Rocketdyne acceptance tes t  data. The per - 
forniancc of the enginck in position 2 was lower during the short  duration 
static test ( S A - 3 8 )  than during the Rocketdyne acceptance tes t ,  but was 
slightly higher during the long duration s ta t ic  tes t  (SA-39).  Two engines 
(positions 4 and 5) were replaced a f t e r  s ta t ic  tes t ,  and no comparison can 
be rnaclci for  them. This leaves only two engines (positions 1 and 7) with the 

. 
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usual upward shift in performance. The cause of the lower power levels 
on the three engines i s  not known, but the lower levels are supported by 
dec reases  in chamber pressures  in a l l  three engines, and lower pump 
speeds on two of the three engines. These data a r e  shown in table 3. 
S-IB-6, the f i r s t  stage with 205K thrust  engines, had seven engines that 
showed lower performance during static test (see reference 4). 

Biasing factors  have been used on Rocketdyne acceptance tes t  data in 
previous predictions because of the correlation (consistent deviation) between 
the Rocketdyne data and actual flight data. The biasing factors merely adjust 
the Rocketdyne data to agree with actual flight data. However, since it cannot 
be definitely concluded that the lower than usual power levels of the three 
engines during stage static test a re  not valid data, and there  is no 205K flight 
data available, the performance biasing factors  used for  S-IB-7 are more  
conservative than those derived from the flight data of S-IB-1 through S-IB-4. 
The propellant flowrate adjustments (LOX and fuel flight biasing factors) 
were made since there  i s  no direct evidence that the mixture ra t io  shift wil l  
not occur during flight even if the power levels a r e  low. The shift in mixture 
ra t io  seen during past flights has a significant effect on stage performance 
and must be at  least  conservatively considered in this prediction. The pre-  
dicted individual engine flight data reduced to sea level, and the rated pump 
inlet conditions a t  30  seconds after first motion, a r e  shown in table 5 and 
were used to predict flight performance. The flight biasing factors  used in 
this prediction are as follows: 

Pa rame te r  Biasing Factor 

1 n n w  Chamber Presswe A. " W " "  

Thrust 1.005598 

Turbopump R P M  1.063987 

LOX Flowrate 1.007305 

Fuel Flowrate 1.002841 

The performance adjustments applied to the Rocketdyne data account for  the 
performance differences noted at  30 seconds. Furthermore,  previous S-IB 
flights have exhibited a shift,  throughout flight, in engine performance 
referenced to sea  level and rated pump inlet conditions. Included in this  
shift \\'as a buildup to quasi-stal)le Conditions at  approximately 30 seconds, 
with a slower buildup thereafter. This revised final prediction for AS-207 
iiiciucies a periurmance siiii'i qu iva ien i  ici ihai noieci in previous S-i3 rlighis. 
Figure 15 shows the power level shift a s  a percentage of the predicted 30- 
second sea level thrust. 
only to shift the curve upward. The shape of the curve was determined from 
analysis of the f i r s t  four S-IB flights. 

The flight performance adjustments were used 
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2.2.5 Engine Cutoff Criteria 

The t ime base two (T2) cutoff sequence wil l  be initiated when any one of the 
four liquid level s enso r s  is uncovered. The predicted actuation t ime is 
133.94 seconds after f i r s t  motion. Liquid level s enso r s  are located in fuel 
tanks F-2 and F-4 and LOX tanks 0 - 2  and 0 - 4 .  IECO will be signaled by 
the launch vehicle digital computer (LVDC) 3 . 0  seconds after initiation of 
the t ime base two (T2) cutoff sequence. 

The OECO signal can be given by the deactuation of two of the th ree  thrust  
OK pressure switches in any one of the outboard engines, o r  by one of the 
fuel depletion probes located in the sumps of fuel tanks F-2 and F-4. The 
predicted performance i s  based on the assumption that LOX pump starvation 
of two of the four outboard engines will occur 3 . 0  seconds after the IECO 
signal, and that the OECO signal will be given by deactuation of the thrust  
OK pressure switches. A fuel depletion OECO can occur if the fuel bias and 
the fuel between the container bottoms and the depletion probes is consumed 
prior to a LOX pump starvation. Because of the possible consumption of the 
fuel between the theoretical tank bottom and the depletion probes, the t ime 
between IECO and OECO can be a s  much a s  4 seconds, and the OECO mode 
can be either f u e l  depletion o r  LOX pump starvation. 

The t ime base two (T2) sequence, expected to s t a r t  133.94 seconds af ter  f i r s t  
motion, is  summarized a s  follows: 

T2 + 0.0 sec - LVDC activated. T2 sequence begins 
with liquid level sensor actuation. 

T2 + 3 . 0  sec - IECO signal given by LVDC. 

T2 + 4.5 sec - Outboard engine thrust  OK p res su re  
switches grouped. 

T2 + 5.5 sec - Fuel depletion senso r s  armed.  

T2 + 6 . 0  sec - OECO signal expected due to LOX 
starvation. 

This sequence was determined for the predicted performance with the LOX 
and fuel liquid level s enso r s  located according to present stage documentation. 
The sequence separates  thrust  OK p res su re  switch grouping from fuel  de- 
pletion sensor arming in order  to minimize the possibility of OECO caused 
by a premature sensor  signal. 

. 
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Table 3. Sea Level Test Data for S-IB-7 Stage Engines 

539,98 

240.21 

2.2480 

6705.0 

Engine H-7077 
Position 1 

543.92 

240.89 

2.2580 

, 6731.8 

Thrust (kips) 

Chamber P res su re  (psia) 

Specific Impulse (sec) 

LOX Flowrate (lbm/sec) 

Fuel Flowrate (lbm/sec) 

Mixture Ratio 

Turbopump Speed (rpm) 

Engine H-7078 
Position 2 

Thrust (kips) 

Chamber P res su re  (psia) 

Specific Impulse (sec) 

LOX Flowrate (lbm/sec) 

Fuel Flowrate (lbm/sec) 

Mixture Ratio 

Turbopump Speed (rpm) 

Engine H-7076 
Position 3 

Thrust (kips) 

Chamber P res su re  (psia) 

Specific Impulse (sec) 

LOX Flowrate (lbm/sec) 

Fuel Flowrate (lbm/sec) 

Mixture Ratio 

Turbopump Speed (rpm) 

Static Test 
Analysis 

SA -38 

200.78 

694.75 

261.34 

531.04 

237.21 

2.2387 

6666.8 

202.66 

697.72 

262.95 

531.97 

238.76 

2.2281 

6638.7 

207.69 

712.33 

264.99 

541.65 

242.12 

2.2371 

6771.4 

Engine H-7074 
Position 4 

Static Test 
Analysis 

S A  -39 

201.50 

696.98 

260.27 

535.23 

238.95 

2.2399 

6704.0 

205.78 

707.34 

263.03 

540.18 

242.18 

2.2305 

6711.8 

206.89 

709.88 

263.78 

542.04 

242.28 

2.2372 

6774.7 

Thrust (kips) 

Chamber P res su re  (psia) 

Specific Impulse (sec) 

LOX Flowrate (lbm/sec) 

Fuel Flowrate (lbm/sec) 

Mkture  Ratio 

Turbopump Speed (rpm) 

Average 
Rocketdyne 
Engine Logs 

From PAST-076 
Program 

205.64 

708.09 

262.35 

542.04 

241.79 

2.2418 

6764.2 

205.58 

705.08 

263.07 

539.57 

241.89 

2.2306 

6713.6 

205.48 

705.62 

264.02 

537.78 

240.50 

2.2362 

6736.3 

Predict ion * 

206.79 

711.63 

262.27 

546.00 

242.48 

2.2518 

6791.2 

206.73 

708.60 

262.98 

543.51 

242.58 

2.2406 

6740.4 

206.63 

709.15 

263.93 

541.71 

241.18 

2.2460 

6763.2 

Not Applicable. Engine 
No. H-7080 was on stage 
A,...<..,. ,.+..+:r. *, ,e  uu. "16 U C C I C I C .  CCIOL.. 
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Table 3. Sea Level Test Data for S-IB-7 Stage Engines (Continued) 

Thrust  (kips) 

Chamber Pressure (psia) 

Specific Impulse (sec) 

LOX Flowrate (lbm/sec) 

Fuel Flowrate (lbm/sec) 

Mixture Ratio 

Turbopump Ratio (rpm) 

Engine H-4078 
Position 5 

203.75 

699.97 

263.76 

532.64 

239.84 

2.2208 

6632.7 

Thrust (kips) 

Chamber Pressure  (psia) 

Specific Impulse (sec) 

LOX Flowrate (lbm/sec) 

Fuel Flowrate (lbm/sec) 

Mixture Ratio 

Turbopump Speed (rpm) 

Engine H-4074 
Position 6 

205.84 

705.34 

264.18 

537.93 

241.22 

2.2300 

6700.8 

Static Tes t  Static Test 
Analysis Analysis 

SA-39 

206.99 

708.87 

264.09 

541.86 

241.91 

2.2400 

6727.6 

Not Applicable. Engine 
No. H-4073 was on stage 
during static test. 

Thrust  (kips) 

Chamber Pressure  (psia) 

Specific Impulse (sec) 

LOX Flowrate (lbm/sec) 

Fuel Flowrate (lbm/sec) 

Mixture Ratio 

Turbopump Speed (rpm) 

206.37 

706.98 

265.03 

537.61 

241.09 

2.2300 

6698.5 

Engine H-4076 
Position 8 

Thrust (kips) 

Chamber Pressure (psia) 

Specific Impulse (sec) 

LOX Flowrate (lbm/sec) 

Fuel Flowrate (lbm /sec) 

Mixture Ratio 

Turbopump Speed (rpm) 

*See Section 2.2.4 

207.12 

713.76 

262.61 

545.55 

243.15 

2.2437 

6749.3 

203.11 

698.01 

262.86 

532.81 

239.91 

2.2209 

6634.1 

207.80 

711.34 

264.25 

543.02 

243.34 

2.2315 

6746.7 

206.26 

711.10 

261.50 

545.61 

243.18 

2.2437 

6749.6 

Average 
Roc ketdyne 
Engine Logs 

From PAST-076 
Program 

204.64 

700.80 

263.70 

535.68 

240.34 

2.2288 

6720.6 

204.64 

702.72 

262.98 

536.64 

241.50 

2.2221 

6668.0 

Prediction* 

~ 

205.78 

704.30 

263.62 

539.59 

241.02 

2.2388 

6747.4 

205.78 

706.23 

262.90 

540.56 

242.19 

2.2320 

6694.5 

207.30 

714.32 

263.54 

544.08 

242.53 

2.2434 

6735.4 

208.46 

717.89 

263.45 

548.05 

243.22 

2.2533 

6762.2 
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Figure 1. Vehicle Longitudinal Thrust  Ver sus  Flight Time 
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Figure 3. Total Vehicle Fuel Flowrate V e r s u s  Flight Time 
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Figure 4. Total Engine LOX Flowrate Versus Flight Time 
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Figure 5. Vehicle Mixture Ratio V e r s u s  Flight Time 
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Figure 8 ,  Engine LOX Pump Inlet Specific Weight Versus Flight Time 
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Figure 9. Typical Engine Thrust Versus Plight Time 
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Figure 12. Typical Engine Chamber P r e s s u r e  Versus  Flight Time 
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FUEL SPECIFIC WEIGHT (LBFy\/FT3) 

Figure 14. Propellant Load Versus Fuel Specific Weight 
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